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Abstract
We have analysed the dispersion of longitudinal collective modes in classical
asymmetric charged-particle bilayer liquids in the strong coupling regime. The
theoretical analysis is based on a dielectric matrix calculated in the quasi-
localized charge approximation (QLCA). The matrix elements are expressed
as integrals over inter-layer and intra-layer pair correlation function data that we
have generated by molecular dynamics (MD) simulations. At the same time,
MD simulations of density and current fluctuation spectra were analysed to infer
the collective mode dispersion. The long-wavelength finite frequency (energy)
gap, brought about by strong inter-layer correlations, is a monotonically
increasing function of the density ratio, n2/n1, and, for the smallest value
of the inter-layer spacing considered, the gap reaches its maximum value when
the two layer densities are equal. It appears that it stays at that value for
n2/n1 > 1.

PACS numbers: 52.27.Gr, 52.25.Mq, 52.35.Fp

1. Introduction

Studies of the dynamic properties of strongly coupled charged-particle bilayers have, for the
most part, been confined to symmetric (n1 = n2) bilayers. Addressing the collective mode
behaviour, which is of interest in the present work, the symmetric bilayer features four modes:
two (longitudinal and transverse) in-phase (+) modes and two (longitudinal and transverse)
out-of-phase (−) modes. For weak coupling, the random-phase approximation (RPA) predicts
that the (−) mode exhibits an acoustic (ω ∝ k) behaviour for k → 0. In contrast, for strong
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Table 1. QLCA and MD values of the k → 0 finite-frequency energy gap as a function of the
n2/n1 density ratios; �1 = 50, d/a1 = 0.3; ω

sym
GAP =

√
2πne2I/m is the gap frequency of the

symmetric bilayer. ω2
0 = πe2/m(n1/a1 + n2/a2); πa2

i n2
i = 1.

QLCA MD QLCA MD
n2/n1 ωGAP/ω0 ωGAP/ω0 ωGAP/ω

sym
GAP ωGAP/ω

sym
GAP

1/16 0.943 1.207 0.611 0.637
5/16 0.989 1.331 0.728 0.755
1 1.040 1.350 1.000 1.000
24/16 1.018 1.343 1.165 1.185

coupling, our own theoretical and molecular dynamics (MD) studies [1–4], as well as the
MD simulations carried out by Ranganathan and Johnson [5], show that for k → 0, a finite-
frequency gap develops.

The question arises: how is the collective mode dispersion modified when n1 �= n2? The
asymmetry question was addressed some time ago by Vitlina and Chaplick [6, 7] and, more
recently, by Kulik et al [8] in the context of an RPA description of the electron bilayer in
the zero-temperature quantum domain. By contrast, the present work addresses this question
in the context of a QLCA (quasi-localized-charge approximation) description [1, 2, 9] of
the strongly coupled charged-particle bilayer in the classical domain. The most important
issue here is the variation of the energy gap with density ratio n2/n1 as described in table 1
and figure 3. As to the topology of the (+) and (−) dispersion curves, we will see that, in
contrast to the symmetric bilayer, the present theory predicts that the two dispersion curves can
never intersect nor can the corresponding eigenvectors have fixed in-phase and out-of-phase
polarizations. This latter behaviour is by no means unique to the QLCA [6] and is the result
of the breaking of the equal-density symmetry.

2. QLCA dielectric matrix

We consider a charged-particle bilayer described by a model that consists of two unequal-
density charged-particle layers of zero thickness, spaced at a distance d apart. Each 2D
layer contains a classical Coulomb liquid neutralized by its own rigid uniform positive
background. The elements of the interaction matrix are φ11(k) = φ22(k) = 2πe2/k,
φ12(k) = [2πe2/k] exp (−kd). �i = βe2/ai is taken to be the customary measure of the
coupling strength in layer i; 1/β is the temperature in energy units and ai = 1/

√
πni .

The derivation of the dielectric matrix εij (k, ω) proceeds from the QLCA equation of
motion relating the induced average charge density response ρi in layer i to the external charge
density perturbation ρext

l in layer l.

ρi(k, ω) = [ω2I − C(k)]−1
ij̄

nj̄ k
2

m
φj̄l̄(k)ρext

l̄
(k, ω) (i, j, l = 1, 2). (1)

I is the (2 × 2) identity matrix and C(k) is the dynamical matrix defined by

Cij (k) = ωpi
ωpj

e−kd(1−δij ) + Dij (k) (i, j = 1, 2); (2)

barred indices denote summation. One obtains the elements of the dielectric matrix

ε11(k, ω) = 1 − 1

	(k, ω)

{
ω2

p1
[ω2 − D22(k)] + ωp1ωp2D12(k) e−kd

}
,

ε22 = ε11(1 ↔ 2), (3)
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(a) (b)

Figure 1. MD pair distribution functions g11(r) (solid curve), g12(r) (dashed curve) and g22(r)

(dotted curve); �1 = 50, �2 = 27.95, N1 = 1600, N2 = 500.

ε12(k, ω) = − 1

	(k, ω)

{
ωp1ωp2D12(k) + ω2

p2
[ω2 − D11(k)] e−kd

}
, ε21 = ε12(1 ↔ 2),

(4)

where 	(k, ω) = [ω2 − D11(k)][ω2 − D22(k)] − [D12(k)]2 and ωpi
=

√
2πnie2k/m is the

2D plasma frequency in layer i. The Dij (k) account for the inter- and intra-layer Coulomb
correlations beyond the RPA

D11(k) = πe2n2

m
H +

πe2n1

m

∫ ∞

0
dr

1

r2
h11(r)

{
1 − 4J0(kr) + 6

J1(kr)

kr

}
,

D22 = D11(1 ↔ 2) (5)

D12(k) = −πe2√n1n2

m
H +

πe2√n1n2

m

∫ ∞

0
dr rh12(r)

1

(r2 + d2)3/2

{
1 − 4J0(kr) + 6

J1(kr)

kr

}

− 3πe2√n1n2

m

∫ ∞

0
dr rh12(r)

d2

(r2 + d2)5/2

{
1 − 2J0(kr) + 2

J1(kr)

kr

}
,

D21(k) = D12(k) (6)

H ≡ H(d) =
∫ ∞

0
dr rh12(r)

1

(r2 + d2)3/2

{
1 − 3d2

r2 + d2

}
; (7)

hij (r) = gij (r) − 1 = (1/N)
∑

k[Sij (k) − δij ] exp(ik · r). The gij (r) are the MD-generated
pair distribution functions shown in figure 1. The behaviour of g12(r) relative to g11(r) is
qualitatively similar to that found for the symmetric bilayer [10]. The similarity of g11(r) and
g22(r) in figure 1(a), which is rather surprising in view of the difference between a1 and a2,
reflects the fact that, for d/a1 sufficiently small, particles in layer 2 appear in clusters with an
inter-particle distance ≈a1. In contrast, for d/a1 = 0.9 (figure 1(b)), the layer 2 and layer 1
structures are more independent and the positions of the g22(r) and g11(r) peaks conform to
the expected ratio of

√
N1/N2.

3. Plasmon dispersion

Turning now to the calculation of the dispersion of the longitudinal excitations, the ± oscillation
frequencies are obtained by setting Det[ε(k, ω)] equal to zero:

ω2
±(k) = 1

2 [C11(k) + C22(k)] ∓ 1
2

√
[C11(k) − C22(k)]2 + 4[C12(k)]2 (8)

Both in the primitive RPA (i.e., RPA where thermal dispersion effects are ignored) that results
from equation (8) with the Dij (k) set equal to zero and in the QLCA, the (+) mode exhibits the
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Figure 2. (a) ± QLCA dispersion curves for �1 = 50, �2 = 27.95, d/a1 = 0.3, N1 = 1600,
N2 = 500; ω01 =

√
2πn1e2/ma1. The (+) and (−) modes are represented by the solid

and dashed curves, respectively. The inset shows MD dispersion data ω/ω01 as a function of
ka1; the apparent intersection of the two modes is probably spurious and is due to the lack
of sufficient resolution. (b) u± eigenvectors as functions of ka1 calculated from equation (1);
u+(k) = [u+

1(k), 1], u−(k) = [1, u−
2 (k)].
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Figure 3. QLCA energy gap frequency as a function of density ratio n2/n1 for different inter-layer
separations: ω2

0 = πe2/m(n1/a1 + n2/a2); πa2
i n2

i = 1.

well-known ω+ ∝ √
k dispersion in the k → 0 limit. However, the primitive RPA and QLCA

descriptions of the (−) mode in this limit differ dramatically: in the RPA description, ω−(k →
0) ∝ k, whereas in the QLCA description, ω−(k → 0) ≡ ωGAP =

√
(πe2/m)(n1 + n2)H .

There is one notable difference in the QLCA description of plasmon dispersion in
symmetric and asymmetric bilayers. In the symmetric case, the (+) and (−) curves intersect to
form a braided structure [1, 2] with the dispersion terminating in a single Einstein frequency at
large k. In this case, one can define the (+) and (−) modes by requiring continuous derivatives
across the intersections; with this definition, the (+) mode is always in-phase and the (−) mode
is always out-of-phase. In the asymmetric case, the (+) and (−) dispersion curves also assume
the braided structure, but can never quite intersect (see figure 2(a)), and they terminate in two
distinct Einstein frequencies. Similarly to what occurs in the RPA [6, 7], the corresponding
(+) and (−) eigenvectors are k-dependent (see figure 2(b)), i.e. they do not have fixed in-phase
and out-of-phase polarizations. We note that the abrupt changes in the polarizations occur
near the points of closest contact between the ± dispersion curves.

The MD dispersion data (inset to figure 2(a)) for ka1 � 0.6 are in good correspondence
with the (+) theory curve and for 0.7 � ka1 � 1.4 with the (−) theory curve. Both theory
and MD data show an energy gap. However, the QLCA theory predicts an energy gap that is
approximately 25–30% lower than the MD value. We do not yet understand the origin of this
discrepancy which has also been reported in the symmetric bilayer [3]. Nonetheless, table 1
shows that, over the studied range of density ratios, there is consistently a good agreement
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between the QLCA and MD gap-frequency ratios ωGAP
/
ω

sym
GAP. We see from figure 3 that,

not surprisingly, the energy gap increases with increasing density ratio for a fixed inter-layer
spacing. For the smallest value of 0.35, the dimensionless gap frequency ultimately reaches a
maximum value of 1.05 and appears to stay at that value thereafter.

The variation of the energy gap with density ratio, the marked contrast between the
topologies of the QLCA and RPA [6, 7] dispersion curves, and the MD generated gij (r) data
(figure 1) and dispersion curves (figure, 2 inset) are the principal new results of the present
paper.
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